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ABSTRACT 

A finite collection "P of finite sets tiles the integers iff the integers can be 
expressed as a disjoint union of translates of members of 7 ~. We associate 

with such a tiling a doubly infinite sequence with entries from "P. The set 

of all such sequences is a sofic system, called a tiling system. We show 

that, up to powers of the shift, every shift of finite type can be realized 

as a tiling system. 
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1. I n t r o d u c t i o n  

For notation, terminology, and basic results of symbolic dynamics, see the book 

by D. Lind and B. Marcus [LM]. 

Let P = { P 1 , . . . , P K }  be a finite collection of finite subsets of the integers 

Z = { . . . , - 1 ,  0, 1, . . .} ,  called p ro to t i l e s .  We normalize the prototiles so that 

each has minimum 0. A t i le  is a translate of a prototile. If the integers can 

be expressed as a disjoint union of tiles, Z = U(tj  + Pk~), we say that P t i les 

t h e  in t ege r s .  The corresponding t i l ing o f  t h e  i n t ege r s  by :P is the point 

2 x = (xi) E l-L=_~{1, , . . . , K }  defined by x, = k if and only if there exists j 

such that i E tj  + Pk, and k a = k. Thus we can think of a tiling as being given by 

a bi-infinite sequence of colors, where the colors are in one-to-one correspondence 

with the prototiles. 

Let a denote the shift ,  (a(x))~ = xi+> The collection of points corresponding 

to tilings of the integers by P,  denoted T(P) ,  is closed and shift-invariant. We 

call a: T(P)  -+ T(P)  a t i l ing sys t em.  We first show that every tiling system 

is sofic. We then prove our main result: up to powers of the shift, every shift of 

finite type can be realized as a tiling system. 

MAIN THEOREM: Let ~: E --+ E be a shift of ~nite type. Then there is a positive 

integer m and a tiling system a: T -~ T such that 

(1) T = To UT1 U.- .  UTm-1,  where the T~ are closed and cyclically permuted 

by the shift a; 

(2) am: E -+ ~, is topologically conjugate to every am: T~ -+ T~. 

Recall that a P e r r o n  n u m b e r  is a positive real algebraic integer that domi- 

nates its algebraic conjugates. 

COROLLARY: The set o f  topological entropies of  tiling systems is the same as 

that of  shifts of  finite type, i.e., the set of  logarithms of  roots of  Perron numbers. 

Remark: In the sequel we will sometimes, as is common in symbolic dynamics, 

call the space T a tiling system, the space E a shift of finite type, etc. 

We note that partial results on nonemptiness of a tiling system generated by 

a single prototile are known. D. Newman [N] gave a simple number-theoretic 

criterion for determining whether or not a single prototile of prime power car- 

dinality can be used to tile the integers. The first author and A. Meyerowitz 

[CM] found a related criterion which they showed to be sufficient for an arbitrary 

single prototile to tile the integers, and necessary if the cardinality is the product 

of two prime powers; its necessity for an arbitrary single prototile is unknown. 
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We are not aware of any results in this direction for tiling systems arising from 

multiple prototiles. 

2. T i l ing  s y s t e m s  are  sof ic  

Consider the following examples. 

(1) 5O = {{0}, {0, 1}}. It is more convenient to think ofho as {R, BB}, (R--red, 

B = blue). Then T(ho) is the set of all bi-infinite indexed concatenations of R 

and B such that between any two consecutive occurrences of R there is an even 

number of B's, the well-known even system. In this case T(ho) is also a renewal 

system, although we do not use that fact here. Recall that  a r e n e w a l  s y s t e m  is 

the collection of indexed bi-infinite sequences which are concatenations of a finite 

set of finite words from some alphabet. In the sequel, we shall abuse notation 

and write T(R, BB) in place of T({{0}, {0, 1}}). 

(2) 5O -- {{0}, {0, 2}}, which we replace by {R ,B  _ B}. Then T(5O) is the 

renewal system generated by words R, BRB, and BBBB.  
The next example shows that  not every subshift that is topologically conjugate 

to a tiling system is itself a tiling system. 

(3) 5O -- {{0}, {0, 2, 3}}, or {R, B _ BB}. T(ho) is the renewal system generated 

by R and BRBB.  It is topologically conjugate to the renewal system generated 

by R and BRBY,  but the latter is not a tiling system. 

(4) 5O = {R, BB_ B, Y__ Y}, i.e., {{0}, {0, 1, 3}, {0, 3}}. In this case T('P) is 

not a renewal system. (Otherwise, consider the renewal word W which includes 

the first B in . . .  R R R B B Y B Y Y Y . . .  C T(ho). But no such W can exist, since 

some R ~ must be a renewal word and . . .  R R R W R R R . . .  ~ T(ho).) 
To show that  every tiling system is sofic, recall the proof that the even system 

o: T(R, BB) --~ T(R, BB) is sofic - -  it is the image of the shift of finite type 

0: T(R1, B1B2) -+ T(R1,B1B2) under the "drop the subscripts" map. Here 

T(R1, B1B2) is the set of all bi-infinite indexed concatenations of R1 and B1B2. 
We show that  every "subscripted tiling system" is a shift of finite type. Clearly 

every tiling system can be obtained from a subscripted tiling system by dropping 

the subscripts. 

Formally, let 5O = { P I , . . . ,  PK} be a finite collection of prototiles. Write 

Pk = {0 =Pk,1 <Pk,2 < "'" < Pk,~k} 

and define T -- :F(ho), on alphabet {(k, ~) : 1 < k < K, 1 < ~ < lk}, by x E T i f f  

there is a tiling of the integers by members of 50, Z = [.J(t 3 + Pk~), such that  for 

every i, there exist j = j(i) and s = s such that i e tj + Pk~ and x~ = (k3,/). 
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Equivalently, x E [ I{(k,  g) : 1 _< k _< K, 1 < t < gk} is in :~ if and only if for 

every i, xi = (k, l) and 1 < ~' _< /k imply Xi+Vk.t,_pk,~ = (k , / ' ) .  Informally, 

if xi is an element of a tile, then the other elements of that  tile appear  in the 

appropriate places of x. 

The following result was proved in conversations with K. Schmidt in Warwick 

in 1994. 

THEOREM: Every "subscripted tiling system" is a shift of  finite type. 

Proof: Let L be the length of a longest prototile in P.  (For example, B _ B has 

length 3.) We show that  T -- T ( P )  is a shift of finite type by showing that  if 

x E l-I{(k, t)} and every solid L-word which appears in x appears in some point 

of T, then x E T. 

Suppose that  every solid L-word which appears in x appears in some y C T. 

Let xi = (k, ~). Since Pk,tk + 1 _< L, there exists y E T such that  

Y i - - p k , t '  " " " ' Y i - - p k , t + P k , e  k ~ -  X i - - p k , t '  " " " ~ X i - - P k , t - k P k , t k  " 

But y E T and y, = (k, / ) ,  so Yi--pk,~+Pk,~, = (k, !') for 1 _</' _</k. Hence x E T. 

Informally, suppose that  every solid L-word which appears in x appears in a 

subscripted tiling. Since no tile is longer than L, if x, is an element of a tile, then 

the other elements of that  tile appear in the appropriate places of x. Therefore 

x~:F. I 

COROLLARY: Every tiling system is sofic. 

Remark: We cannot use L - 1 in the proof of the theorem. Again let P = 

{R, BB} ,  so T = T(R1,B1B2) and L = 2. Every 1-word appearing in x = 

. . .  B 1 B I B 1 . . .  appears in some point of T, but x ~ T. 

Not every sofic system can be realized as a tiling system, as is shown by the 

following 

PROPOSITION: A tiling system which has a point of period 2 must have at least 

two fixed points. 

By period here we will mean ]east period. 

Proof: The point of period 2 is ...abab..., so there are two prototiles, each 

consisting entirely of even integers. Each tiles the integers, so both . . . aaa . . .  

and . . .  bbb.., are in the tiling system. | 



Vol. 130, 2002 THE SYMBOLIC DYNAMICS OF TILING THE INTEGERS 25 

Similarly, if a tiling system has a point of period 3 or one of period 4, then 

it must have at least one fixed point. The existence of a point of period greater 

than 4 does not imply the existence of a fixed point. 

We can also use the preceding proposition to show that  powers of tiling systems 

need not even be conjugate to tiling systems: 

(5) Consider T = T(7 ~) where P = { R R _  R, B _ _ _  B},  i.e., {{0, 1, 3}, {0, 4}}. 

The tiling system a: T -~ T has exactly one orbit of period 4 - ( R R B R )  ~ ,  no 

points of period 2, and exactly one fixed point - B ~ .  Its square, a2: T --~ T, has 

a point of period 2 - [(RR)(BR)] ~,  but only one fixed point - (BB)  ~.  So it is 

not topologically conjugate to a tiling system. 

3. T h e  m a i n  t h e o r e m  

MAIN THEOREM: Let a: E -~ E be a shift of finite type. Then there is a positive 

integer m and a tiling system a: T -+ T such that 

(1) T = To U T1 U . . .  U Tin-l ,  where the T~ are closed and cyclically permuted 

by the shift a; 

(2) am: E --~ E is topologically conjugate to every am: T~ -+ T~. 

Proof: We may assume that  E = EA, the edge shift determined by a matr ix  A 

with nonnegative integer entries. A is the adjacency matr ix  of a directed graph G. 

The alphabet of EA is the set of arcs (directed edges) of G, and (x~) C EA if and 

only if for every i, the terminal vertex of x~ is the initial vertex of xi+l.  

For every positive integer m, am: EA --~ EA is topologically conjugate to 

a: EAm -~ EArn. We find a tiling system a: T -~ T and a positive integer m 

such that  T = To U T1 [3-. �9 [3 Tin- 1, the T, are closed and cyclically permuted by 

the shift, and a: EArn -+ EA~ is topologically conjugate to am: To --+ To. Hence 

am: EA -~ EA is topologically conjugate to every am: T~ -+ T,. 

Suppose that  A is V x V. Choose n > V so that  

(VmaxA~j )  13n < (n + 1)!. 

Let m = 13n. Then every entry of A m = A 13n can be written (uniquely) as 

c1(1!) + c2(2!) + ' "  + en(n!), 

w h e r e 0 < c k < _ k f o r l < k < n .  

We now construct the tiling system. The prototiles will be of two types: b a r -  

be l l s  and r acks  (to hold barbells). We will use the same terms for the corre- 

sponding tiles. In the sequel we will use colors to label prototiles. The symbols 

a, a ~ will stand for generic colors. 
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The barbells are the broken words of the form 

a2 +2_ 2.v.+.l -2_ a 2 

for 0 < r < 2 n -  2. 

The racks are chosen from the broken words of the form H C T  of length 13n + 

2J, 1 < J < V, where the h e a d  is 

H = ( a  _)Ia2"-21 

for some I,  1 < I < V; the ta i l  is 

T =  (_a) J 

for some J,  1 _< J < V; and the c e n t e r  is 

C =- a 3n+~ ~_.2k~ a ~.2.k~ a S n - 4 k - l - z  

for s o m e i a n d k ,  0 < i < k - l a n d l < k < n .  

Given I ,  J with 1 <__ I,  J <_ V, write 

(A13n)ij = c1(1!) + c2(2!) + . - .  + cn(n!), 

where 0 _< ck <_ k for 1 < k < n. If  Ck # 0, choose the racks to be the ck --- Ck(I, J )  

broken words of the form 

[(a _)la2n-2I] [a3n+, t-.2.k~ a ~.2.k~ aSn-4k-l-*] [(_ a)J] 

for 0 < i < Ck -- 1. 

The barbells and racks have the following properties. 

�9 The head H = (a _)Ia2'~-2I of a rack can be filled by the tail T = (_ a') J of a 

rack in a tiling if and only if I = J. 

�9 Label the blanks in the center 

C = a3n+i~-.2.k. ~- a ~.2.k.~ a S n - 4 k - l - *  

of a rack by {1, 2 , . . . ,  4k}. Barbells can appear in a tiling only in the gaps in the 

centers of racks, starting only in odd places and straddling the a. Furthermore, 

the blanks in this center can be tiled by barbells in exactly k! ways. To see 

this, define a permutation ~r of {1, 2 , . . . ,  k} by ~r(j) = ~ if and only if a barbell 

a'a' *:- 2.,.+.1 ~_ a'a' occupies places labelled 2j - 1, 2j, 2(k + i) - 1, 2(k + / ) .  

�9 The heads of racks can appear in a tiling starting only at places which differ 

by multiples of 13n. 
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Let T be the tiling system with prototiles the barbells and racks chosen above. 

Then T = To UT1 U...UT13,~_l, where Ti is the set of indexed bi-infinite sequences 

in T in which the heads appear starting at places congruent to i modulo 13n. 

Thus To consists of all indexed bi-infinite concatenations of words of length 13n, 

of the fo rm/~C ,  starting at multiples of 13n, where H and C are the head and 

center of a rack, a n d / ~  and C are the solid words resulting from filling them in a 

tiling. Recall that  if H -- (a _)Ia2n-2I, then it must be filled by a tail T = (~ a') I. 

C can be filled only by barbells. 

Define an edge shift as follows. Let G ~ be the directed graph with vertices 

1, 2 , . . . ,  V, and an arc from I to J for each rack with head (a _)Xa2n-2I, tail 

(_ a) J, and center tiled by barbells. There are (A13n)ij arcs from I to J ,  and an 

arc with head (a _)Ia2n-2I can follow an arc with tail (_ al) g if and only if I = J .  

Therefore since m = 13n, the adjacency matrix of G ~ is A m and am: To --~ To 

is topologically conjugate to (T: EAm --+ EA~, which in turn is topologically 

conjugate to am: ~A --~ ZA. | 

It  follows immediately from the Main Theorem that  every topological entropy 

of a shift of finite type occurs as the entropy of a tiling system. Since the topo- 

logical entropies of shifts of finite type and also of sofic systems are both equal 

to the logarithms of positive spectral radii of nonnegative integral matrices, or 

equivalently, the logs of roots of Perron numbers, we have 

COROLLARY: The set of topological entropies of tiling systems is the same as 

that of shifts of finite type, i.e., the set of logarithms of roots of Perron numbers. 

The main question we have considered has a natural  analogue in d > 1 di- 

mensions: can every Z d shift of finite type be realized, up to a power, as a Z d 

tiling system? Forthcoming work of the first author, A. Johnson, N. Jonoska, 

and K. Madden adapts the methods used here to address the higher-dimensional 

case. 

[CM] 
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