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ABSTRACT

A finite collection P of finite sets tiles the integers iff the integers can be
expressed as a disjoint union of translates of members of P. We associate
with such a tiling a doubly infinite sequence with entries from P. The set
of all such sequences is a sofic system, called a tiling system. We show
that, up to powers of the shift, every shift of finite type can be realized
as a tiling system.
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1. Introduction

For notation, terminology, and basic results of symbolic dynamics, see the book
by D. Lind and B. Marcus [LM].

Let P = {Py,..., Pk} be a finite collection of finite subsets of the integers
Z=1{...,-1,0,1,...}, called prototiles. We normalize the prototiles so that
each has minimum 0. A tile is a translate of a prototile. If the integers can
be expressed as a disjoint union of tiles, Z = |J(¢; + P%,), we say that P tiles
the integers. The corresponding tiling of the integers by P is the point
T = (z;) € [[,2_{1,2,..., K} defined by z, = k if and only if there exists j
such that i € t; + Pk, and k; = k. Thus we can think of a tiling as being given by
a bi-infinite sequence of colors, where the colors are in one-to-one correspondence
with the prototiles.

Let o denote the shift, (¢(z)), = zi4+1. The collection of points corresponding
to tilings of the integers by P, denoted T(P), is closed and shift-invariant. We
call o: T(P) — T(P) a tiling system. We first show that every tiling system
is sofic. We then prove our main result: up to powers of the shift, every shift of
finite type can be realized as a tiling system.

MAIN THEOREM: Let a: 3 — X be a shift of finite type. Then there is a positive
integer m and a tiling system o: T — T such that
(1) T=ToUTyU---UTy,-1, where the T, are closed and cyclically permuted
by the shift o;
(2) o™: ¥ — ¥ is topologically conjugate to every c™: T, — T.

Recall that a Perron number is a positive real algebraic integer that domi-
nates its algebraic conjugates.

CoOROLLARY: The set of topological entropies of tiling systems is the same as
that of shifts of finite type, i.e., the set of logarithms of roots of Perron numbers.

Remark: In the sequel we will sometimes, as is common in symbolic dynamics,
call the space T' a tiling system, the space X a shift of finite type, etc.

We note that partial results on nonemptiness of a tiling system generated by
a single prototile are known. D. Newman [N] gave a simple number-theoretic
criterion for determining whether or not a single prototile of prime power car-
dinality can be used to tile the integers. The first author and A. Meyerowitz
[CM] found a related criterion which they showed to be sufficient for an arbitrary
single prototile to tile the integers, and necessary if the cardinality is the product
of two prime powers; its necessity for an arbitrary single prototile is unknown.
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We are not aware of any results in this direction for tiling systems arising from
multiple prototiles.

2. Tiling systems are sofic

Consider the following examples.

(1) P = {{0}, {0,1}}. It is more convenient to think of P as { R, BB}, (R=red,
B = blue). Then T(P) is the set of all bi-infinite indexed concatenations of R
and B such that between any two consecutive occurrences of R there is an even
number of B’s, the well-known even system. In this case T(P) is also a renewal
system, although we do not use that fact here. Recall that a renewal system is
the collection of indexed bi-infinite sequences which are concatenations of a finite
set of finite words from some alphabet. In the sequel, we shall abuse notation
and write T'(R, BB) in place of T({{0}, {0,1}}).

(2) P = {{0},{0,2}}, which we replace by {R,B . B}. Then T(P) is the
renewal system generated by words R, BRB, and BBBB.

The next example shows that not every subshift that is topologically conjugate
to a tiling system 1is itself a tiling system.

(3) P = {{0},{0,2,3}}, or {R, B _ BB}. T(P) is the renewal system generated
by R and BRBB. It is topologically conjugate to the renewal system generated
by R and BRBY, but the latter is not a tiling system.

(4P ={R,BB _B,Y_._Y}, ie, {{0},{0,1,3},{0,3}}. In this case T'(P) is
not a renewal system. (Otherwise, consider the renewal word W which includes
the first B in ... RRRBBYBYYY ... € T(P). But no such W can exist, since
some R™ must be a renewal word and ... RRRWRRR. .. ¢ T(P).)

To show that every tiling system is sofic, recall the proof that the even system
o: T(R,BB) — T(R, BB) is sofic — it is the image of the shift of finite type
o: 1~“(R1, B1Bs) — f(Rl, B1B3) under the “drop the subscripts” map. Here
T(Rl, B1B5) is the set of all bi-infinite indexed concatenations of R; and By Bs.
We show that every “subscripted tiling system” is a shift of finite type. Clearly
every tiling system can be obtained from a subscripted tiling system by dropping
the subscripts.

Formally, let P = {Pi,..., Pk} be a finite collection of prototiles. Write

Pe={0=pr1 <pr2<-<Pru}t

and define T = T(’P), on alphabet {(k,£): 1 <k < K,1<{£<{}, byze T iff
there is a tiling of the integers by members of P, Z = | J(t, + P%,), such that for
every i, there exist j = j(i) and £ = £(i) such that i € t; + Py, and x, = (k;, £).
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Equivalently, z € [J{(k,€) : 1 < k < K,1 < £ < £} is in T if and only if for
every 4, r; = (k,£) and 1 < &' < £ imply Titp, ,1—py, = (k,€). Informally,
if z; is an element of a tile, then the other elements of that tile appear in the
appropriate places of z.

The following result was proved in conversations with K. Schmidt in Warwick
in 1994.

THEOREM: Every “subscripted tiling system” is a shift of finite type.

Proof: Let L be the length of a longest prototile in P. (For example, B _ B has
length 3.) We show that T = T(P) is a shift of finite type by showing that if
z € [[{(k,£)} and every solid L-word which appears in z appears in some point
of il~‘, thenz € T.

Suppose that every solid L-word which appears in = appears in some y € T.
Let z; = (k, £). Since py 4, +1 < L, there exists y € T such that

Yi—pr,er- -1 Yi—pr,etpk,e, = Timpr,er- > Ti—pr,e+pr,ey

But y € T and y, = (k, ), so Yiepestpy o = (k, €') for 1 < £/ < ;. Hence z € T.

Informally, suppose that every solid L-word which appears in z appears in a
subscripted tiling. Since no tile is longer than L, if z, is an element of a tile, then
the other elements of that tile appear in the appropriate places of . Therefore
zeT. |

COROLLARY: Every tiling system is sofic.

Remark: We cannot use L — 1 in the proof of the theorem. Again let P =
{R,BB}, so T = T(Ry,B1B;) and L = 2. Every l-word appearing in z =
...B1B1B; ... appears in some point of T, but z ¢ T.

Not every sofic system can be realized as a tiling system, as is shown by the
following

PROPOSITION: A tiling system which has a point of period 2 must have at least
two fixed points.

By period here we will mean least period.

Proof: The point of period 2 is ...abab..., so there are two prototiles, each
consisting entirely of even integers. Each tiles the integers, so both ...aaa...
and ...bbb... are in the tiling system. |
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Similarly, if a tiling system has a point of period 3 or one of period 4, then
it must have at least one fixed point. The existence of a point of period greater
than 4 does not imply the existence of a fixed point.

We can also use the preceding proposition to show that powers of tiling systems
need not even be conjugate to tiling systems:

(5) Consider T'= T(P) where P = {RR _ R, B _ _ _ B}, i.e,, {{0,1,3},{0,4}}.
The tiling system o: T — T has exactly one orbit of period 4 - (RRBR)*°, no
points of period 2, and exactly one fixed point — B®. Its square, ¢%: T — T, has
a point of period 2 - [(RR)(BR)]|™, but only one fixed point — (BB)*®. So it is
not topologically conjugate to a tiling system.

3. The main theorem

MAIN THEOREM: Let o: ¥ — ¥ be a shift of finite type. Then there is a positive
integer m and a tiling system o: T — T such that
(1) T=ToUuTyU---UT,,_1, where the T, are closed and cyclically permuted
by the shift o;
(2) ¢™: ¥ — X is topologically conjugate to every c™: T; — T,.

Proof: We may assume that ¥ = ¥ 4, the edge shift determined by a matrix A
with nonnegative integer entries. A is the adjacency matrix of a directed graph G.
The alphabet of £ 4 is the set of arcs (directed edges) of G, and (x;) € £, if and
only if for every i, the terminal vertex of z; is the initial vertex of z; ;.

For every positive integer m, o™: ¥4 — X4 is topologically conjugate to
0: Lgm — Ygm. We find a tiling system o: T — T and a positive integer m
such that T' = To UTh U---UT,,_1, the T, are closed and cyclically permuted by
the shift, and o: ¥ 4m — L 4= is topologically conjugate to ™: Ty — Ty. Hence
o™: ¥4 — X4 is topologically conjugate to every ™: T, — T,.

Suppose that A is V x V. Choose n > V so that

(V max 4,)" < (n+ 1)L
Let m = 13n. Then every entry of A™ = A'3" can be written (uniquely) as
(1) + ea(2) 4 -+ enlnl),

where 0 < ¢y < kfor1 <k <n.

We now construct the tiling system. The prototiles will be of two types: bar-
bells and racks (to hold barbells). We will use the same terms for the corre-
sponding tiles. In the sequel we will use colors to label prototiles. The symbols
a,a’ will stand for generic colors.
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The barbells are the broken words of the form
a? « 2+l o g2

for0<r<2n-2.
The racks are chosen from the broken words of the form HCT of length 13n+
2J,1< J <V, where the head is

H=(a )la®2
for some I, 1 < I <V; the tail is
T=(a)’
for some J, 1 < J < V; and the center is

forsomeiand £, 0<i<k—1land1<k<n.
Given I,J with 1 < I,J <V, write

(AB™) ) = (1) + ca(21) + -+ - + e (nl),

where 0 < ¢y < kforl < k < n. If ¢, # 0, choose the racks to be the ¢ = ¢, (I, J)
broken words of the form

for0<i<er—1.
The barbells and racks have the following properties.
e The head H = (a _)!a?~%! of a rack can be filled by the tail T = (_a’)” of a
rack in a tiling if and only if I = J.
e Label the blanks in the center

C = a®vHie2ks g ©2h gBr k1

of arack by {1,2,...,4k}. Barbells can appear in a tiling only in the gaps in the
centers of racks, starting only in odd places and straddling the a. Furthermore,
the blanks in this center can be tiled by barbells in exactly k! ways. To see
this, define a permutation 7 of {1,2,...,k} by n(j) = £ if and only if a barbell
a'a’ < 2+l 2 a'a’ occupies places labelled 25 — 1,27, 2(k + £) — 1,2(k + £).

e The heads of racks can appear in a tiling starting only at places which differ
by multiples of 13n.
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Let T be the tiling system with prototiles the barbells and racks chosen above.
Then T = ToUT U, . .UT 3,1, where Tj is the set of indexed bi-infinite sequences
in T' in which the heads appear starting at places congruent to ¢ modulo 13n.
Thus Ty consists of all indexed bi-infinite concatenations of words of length 13n,
of the form HC, starting at multiples of 13n, where H and C are the head and
center of a rack, and H and C are the solid words resulting from filling them in a
tiling. Recall that if H = (a )Ta®*~2!, then it must be filled by a tail T = (_a’) .
C can be filled only by barbells.

Define an edge shift as follows. Let G’ be the directed graph with vertices
1,2,...,V, and an arc from I to J for each rack with head (a ) a?"~?!, tail
(- a)?, and center tiled by barbells. There are (A'*");; arcs from I to J, and an
arc with head (a -)a?" 2! can follow an arc with tail (_ a')” if and only if T = J.
Therefore since m = 13n, the adjacency matrix of G’ is A™ and ¢™: Ty — Ty
is topologically conjugate to o: ¥ 4m — X am, which in turn is topologically
conjugate to 0™: 24 — 2 4. |

It follows immediately from the Main Theorem that every topological entropy
of a shift of finite type occurs as the entropy of a tiling system. Since the topo-
logical entropies of shifts of finite type and also of sofic systems are both equal
to the logarithms of positive spectral radii of nonnegative integral matrices, or
equivalently, the logs of roots of Perron numbers, we have

CoroLLARY: The set of topological entropies of tiling systems is the same as
that of shifts of finite type, i.e., the set of logarithms of roots of Perron numbers.

The main question we have considered has a natural analogue in d > 1 di-
mensions: can every Z% shift of finite type be realized, up to a power, as a Z%
tiling system? Forthcoming work of the first author, A. Johnson, N. Jonoska,
and K. Madden adapts the methods used here to address the higher-dimensional
case.
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